
-- /I/-_ /_ <_'_/?____

_.gfsl,_"av¢>->_'!_ (-7-

p.
A R TIA da D esign Pro]e c t - Ph a se !

Task 1 Report: Overall Design

u_
,O
,O

,-4
I

c_J
O"
Z

O_

u_t
0

Status Report

Bradley P. Allen

Inference Corporation

October 24, 1988

Cooperative Agreement NCC 9-16

Research Activity No. SE. 19

NASA Johnson Space Center

Information_ystemS Directorate

Information Technology Division

©

Researc_t_tbte for Computing and Information Systems

University of Houston - Clear Lake

T.E.C.H.N.I.C.A .L R.E.P.O.R.T



The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space
Center and local industry to actively support research in the computing and
information .sciences. As part of this endeavor, UH-Clear Lake proposed a
partnership with JSC tojointly define and manage an integrated programof research
in advanced data processing technology needed for JSC's main missions, including
administrative, engineering and science responsibilities.JSC agreed and entered into
a three-yearcooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on
computing and information systems among researchers, sponsors and users from
UH-Clear Lake, NASA/JSC, and other researchorganizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Applied Sciences.

Other researchorganizations are involved via the "gateway" concept. UH-Clear
Lake establishes relationships with other universities and research organizations,
having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,
recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.



A R T/A da D esign Proje c t - Ph a se !
Task 1 Report: Overall Design

Status Report





Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Inference Corporation. Dr. Charles McKay
served as RICIS research coordinator.

Funding has been provided by the Information Systems Directorate, NASA/JSC

through Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and

the University of Houston-Clear Lake. The NASA technical monitor for this activity was

Robert T. Savely, of the Software Technology Branch, Information Technology Division,

Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and

should not be interpreted as representative of the official policies, either express or

implied, of NASA or the United States Government.





ART/Ada Design

Task 1 Report:

Project- Phase

Overall Design

Status Report

for

Subcontract 015

RICIS Research Activity SE.19

NASA Cooperative Agreemeat NCC-9-16

March 1988 - October 1988

Bradley P. Allen

Inference Corporation

5300 W. Century Blvd.

Los Angeles, CA 90045

24 October 88 16:47

Copyright (_) 1988 Inference Corporation





ART/ADADESIGNPROJECT-PHASEI TASK1REPORT:OVERALLDESIGN

Table of Contents

1. Introduction

2. Approach

2.1 Introduction

2.2 Design Methodology

2.2.1 Object-Oriented Design
2.2.2 Reusable Software

2.3 Documentation Techniques

2.4 Impact of Ada

2.5 Design Approach

2.6 Differences between ART-h-M 1.5 and ART/Ada 1.0 Prototype

3. Design Overview

3.1 Ada Generator

3.1.1 Introduction

3.1.2 Ada Generator Modules

3.2 ART/Ada Runtime System
3.2.1 Introduction

3.2.2 Runtime System Modules

References

t

5

5

5

5

6

6

6

6

9

10

10

10

tO

10

ll

11

12



ART/ADA DESIGN PROJECT -PHASE I TASK I REPORT: OVERALL DESIGN

Figure 2-1:

Figure 2-2:

List of Figures

Ada Generator

ART/Ada Runtime System

ii



ART/ADA DESIGN PROJECT - PHASE I TASK 1 REPORT: OVERALL DESIGN

1. Introduction

Both the Ada programming language and expert systems technology have been described as ways to

increase software productivity and reliability; given this, it is natural to expect that making expert

systems technology readily available in Ada development environments would be an worthwhile objective.

As the Department of Defense mandate to standardize on Ada as the language for embedded software

systems development begins to be actively enforced, interest on the part of developers of large-scale Ada

systems in achieving this goal has increased.

Two examples of Ada applications that can benefit from the use of expert systems are monitoring and

control systems and decision support systems. Monitoring and control systems demand real-time

performance, small execution images, tight integration with other applications, and limited demands on

processor resources; decision support systems have somewhat less stringent requirements. An example

project which exhibits the need for both of these types of systems is NASA's Space Station. Monitoring

and control systems that will perform fault detection, isolation and reconfiguration for various on-board

systems are expected to be developed and deployed on the station either in its initial operating

configuration or as the station evolves; decision support systems that will provide a_sistance in activities

such as crew-time scheduling and failure mode analysis are also under consideration. These systems will

be expected to run reliably on a standard data processor, currently envisioned as a 1-4 MIPS, 1-4

megabyte workstation. The Station is typical of the large Ada software development projects that will

require expert systems in the 1990's.

The question that we wish to address is: can expert system building tools (ESBTs) be built to support

the development of Ada-based expert systems for projects of this type and magnitude? There is evidence

that this is the case:

• commercial successes in the development and deployment of expert systems for both decision

support and monitoring and control applications,

• existing ESBTs implemented in widely-supported compiled procedural languages (such as C),

and'

• initial work on Ada-based ESBTs.

Work on Aria-based ESBTs has involved the implementation of prototypes supporting knowledge

representationssuch as productionsystems,frames,and logic.Implementation approaches that have been

explored to date includeAda implementations of expertsystem interpretersand automated translationof

specificexpertsystems intoAda sourcecode.

Preliminary results are encouraging, but there is still a long way to go before commercial-quality ESBTs



ART/ADADESIGNPROJECT-PHASEI TASKI REPORT:OVERALLDESIGN

canbeprovided.Problemsthat havebeenencounteredin prototypeeffortsare the size of the executable

image, the size of generated code (in translation-based approaches), and overhead due to run-time

interpretation of variant datatypes. This work has also exposed several design tradeoffs whose resolution

is poorly understood:

• compilation vs. interpretation of the knowledge base,

• strong vs. "weak" typing of the expert system data types,

• minimal vs. extensive use of tasking,

• Aria-based vs. "traditional" expert systems language syntax, and

• a complete Ada expert system development environment vs. an existing non-Ada development

environment with support for deployment in Ada.

The difficulty of making good decisions among the design tradeoffs is compounded by the fact that the

current state of Aria compiler technology tends to make the ESBT's performance (as well as expert

systems implemented using it) overly dependent on the choice of compiler. More work needs to be done

to allow the design and implementation of an Ada-based ESBT whose performance characteristics are

predictable across platforms. Beyond performance considerations, Ada-based ESBTs also need to address

these methodological issues:

• conformance with standard Ada development methodologies in the development of the ESBT,

• verification and validation of the ESBT, and

* support in the ESBT for the validation and maintenance of expert systems.

Finally, there are general questions that must be addressed by the Ada and expert systems communities

at large:

• hardware-level support for concurrent tasks,

• the integration of expert systems development methodologies (and the use of ESBTs) into

standard Ada development methodologies, and

• methods for the design and development of reusable knowledge bases.

Under subcontract to University of Houston - Clear Lake as part of the Cooperative Agreement between

UHCL and NASA Johnson Space Center, Inference Corporation is conducting an Ada-Based ESBT Design

Research Project. The goal of the research project is to investigate these issues in the context of the

design of an Ada-based expert systems building tool. We are taking the following approach: using an

existing successful design as a starting point, analyze the impact of the Ada language and Ada

development methodologies on that design, redesign the system in Ada, and analyze its performance using

both complexity-theoretic and empirical techniques. The research project will attempt to achieve a



ART/ADA DESIGN PROJECT -PHASE [ TASK |REPORT: OVERALL DESIGN

comprehensive understanding of the potential for embedding expert systems in Ada systems, for eventual

application in future projects.

This research project consists of four discrete tasks and reports analyzing the research results at the end

of each task. If the research demonstrates feasibility of the redesign, the design effort will continue into a

second phase that will determine the feasibility of the redesign of a larger subset.

In Task 1, we began our effort with an exploration and comparision of design alternatives. Because the

research objective is the demonstration of the feasibility of developing expert systems systems in Ada, and

because the ART program is an existing example of a development tool for constructing expert systems

systems, ART will serve as a baseline for the design. This report identifies an architecture for an initial

Ada version of ART, henceforth referred to as ART/Ada, and addresses the following topics:

• The methodology followed in the design and implementation of the architecture.

* The design alternatives and the rationale for selecting among them.

* Differences in the Ada architecture which may limit or expand functionality.

. Language differences which require or allow differentiation between the base software and the

Ada version.

The report will serve as a framework for the further refinement of algorithms entailed by a selected

subset of the Ada version of ART, and constitutes the deliverable for Task 1.

In Task 2, we will begin to further refine the algorithms specified in the overall design, resolving and

documenting any open design issues, identifying each system module, documenting the internal

architecture and control logic, and describing the primary data structures involved in the module. This

data will be compiled and provided in a deliverable report, which will contain Ada specifications of

exported packages.

In Task 3, we will develop a comprehensive protocol for the analytic and empirical analysis of the

performance characteristics of the specified algorithms, and implement in Ada the algorithms necessary to

support the analytic and empirical analysis. This protocol will be compiled and provided in a deliverable

report.

In Task 4, we will conduct the experiments and analysis defined in the protocol developed in Task 3,

and will prepare a final report describing the results. To the extent that the results demonstrate the

feasibility of redesign, we will include in this report suggestions for further specification of additional

algorithms in a second design phase.

It is hoped that this effort will ultimately result in a commercial-quality high-end hybrid ESBT that



ART/._d3ADESIGNPROJECT-PFLkSEI TASKI REPORT:O'v'ERALLDESIGN

will be ableto supportthe demandsof large-scaleAdasoftwaredevelopment,whileconferringthe

productivityand maintenancebenefitsthat ESBTsfor other languageenvironmentshavepreviously
demonstrated.



ART/ADADESIGNPROJECT- PHASEI TASK1REPORT:OVER._LLDESIGN

2. Approach

2.1 Introduction

In this chapter, the design methodology for the ART/Ada project will be introduced, and the selected

design for ART/Ada will be described in detail.

2.2 Design Methodology

2.2.1 Object-Oriented Design

ART/Ada will be designed according to a formal Ada design methodology; this design methodology will

be object-oriented design (OOD).

The object-oriented design is an approach to software design in which the system is decomposed into a

set of objects. Each object is mapped to one or more Ada packages. Four different kinds of packages

will be used in the design:

• Abstract Data Object (ADO)

• Abstract Data Type (ADT)

• Package of subroutines (SUB)

• Package of declarations (DCL)

The Abstract Data Object is a package that contains encapsulated data and operations (expressed as

subprograms) performed upon that data. The data is static and local to that package. The data is

known as State Data.

The Abstract Data Type is a package that contains an abstract type and operations performed on that

abstract type. The operations are expressed as subprograms and the abstract type is declared as the type

of one or more parameters of the subprograms within the package.

The package of subroutines is a package of logically related subroutines. There exists no encapsulated

data in this package.

The package of declarations is a package of logically related declarations. These declarations may be

types, constants, or exceptions.



ART/ADADESIGNPROJECT-PHASE[ TASK I REPORT: OVERALL DESIGN

2.2.2 Reusable Software

Reusable software components will be used in the design of ART/Ada. ART/Ada will capitalize on

reusing existing software components provided by the Booch Components [1], a commercially-available

library of reusable Ada packages that implement standard data structures and utilities.

2.3 Documentation Techniques

The detailed design will be documented using the specification of Ada packages.

2.4 Impact of Ada

Ada does not support pointer to functions. Therefore, this feature cannot be used for calling functions

on the left and right hand side of a rule. Instead, the rule compiler will have to generate a case statement

to perform subprogram selection.

Ada does not support conditional compilation. In C, conditional compilation is commonly used to

maintain the system-dependent code segments in a single source file. [t is also used to add or delete some

sections of code depending on user-defined flags. Without the conditional compilation capability, it might

be necessary to maintain multiple source files.

Ada provides features such as variant records, generics, tasking, overloading, etc. that are not

supported by other programming languages. These features, however, should be used with caution

because the costs of using these features may exceed the benefits.

Ada encourages good software engineering practices such as data hiding, object-oriented design, and

software reusability.

2.5 Design Approach

ART-IM(the Automated Reasoning Tool for Information Management), formerly called ART�C, is an

expert system building tool marketed by Inference. Written in C, ART-IM supports the subset of ART

features[2] [3].

ART-IM Version 1.5 will be augmented with an Ada Generator a.s an Ada deployment option to support

the ART/Ada runtime system. As shown in figure 1, the input to the Ada Generator is an ART source

file, and its output is an Ada source file. At any point after an ART source file is loaded into ART-IM,

the generator can be invoked to generate the Ada source code that will be used to restore ART internal

data structures for the ART/Ada runtime system. The ART knowledge base does not have to be reset

before the generator is invoked. The ART program can also be run up to a breakpoint before the code

generation takes place.



ART/ADADESIGNPROJECT-PHASEI TASK1REPORT:OVERALLDESIGN

ART-IM

LE_R

ANALYZER

l

Figure 2-1. Ada Generator

As shown in figure2, the generator output Ada source code should be compiled and linked with the

ART/Ada runtime system and the user-writtenAda code to produce an executableimage.

This approach offers several benefits:

• It will provide both interpreter and deployment compiler in the same environment.

means that the same environment can be used both for development and deployment.

• Itisbased on a proven technology.

This

In order to support the ART/Ada runtime system, it is desirable to add the following additional

features to ART-IM 1.5:



ART/ADA DESIGN PROJECT - PHASE [ TASK t REPORT: OVERALL DESIGN

Ada
Generato_

Ada

Compiler

Figure 2-2: ART/Ada Runtime System

• Ada bindings to call in from Ada to ART-IM

• Strong type checking capability

In order to support the runtime type checking, A_tT-IM should be enhanced with a facility which

prevents a fact with a wrong type from entering into the ART database.

In addition to this, the A_RT-IIvl parser should be enhanced to enforce type checking at compile time.

This is analogous to the type checking of Ada compilers. In order to support this, the syntax of

clefrelation should be extended to have an additional information on the data type. For example,

(defrelatlon foo ((?x :integer) $(?y :symbol) (?z :floa¢)))



ART/ADA DESIGN PROJECT - PHASE I TASK I REPORT OVERALL DESIGN

Inclusion of these features in the ._d:_T/Ada prototype is highly desirable, but it may not be possible

because of the time limitation.

A scenario of how one would develop an ART/Ada application is as follows:

1. Develop the knowledge-base on ART-IM

2. Callout to Ada from ART-IM using the standard callout mechanism for both ART-12M and

ART/Ada

3. Translate the knowledge-base from ART-IM to Ada using the Ada Generator option in ART-

IM

4. Compile the Ada code generated by the Ada generator and link it with the ART/Ada runtime

system and the user's Ada code

5. Deploy the Ada executable image on a host computer or a target system

2.6 Differences between ART-IM 1.5 and ART/Ada 1.0 Prototype

The ART/Ada 1.0 prototype will exhibit a high degree of compatibility with ART-IM 1.5, which is the

base language for ART/Ada. However, there will be some differences.

The following is a list of features which will be different from ART-INI 1.5:

• Data Type: ART/Ada 1.0 will support Ada double precision float (64 bits) whenever an Ada

compiler supports it. The VAX Ada compiler supports it as LONGFLOAT. The Verdix

Ada compiler supports it as FLOAT. The kIP Ada compiler does not support it.

User Interface: ART/Ada 1.0 will have a command loop which supports a subset of the ART-
IM user interface. The minimal user interface support is required to debug ART/Ada and its

applications. The command loop can be easily removed, for an embedded system.

• Input/Output: Input/output capability of ART/Ada 1.0 will be limited to print, princ, and

printout. Streams will not be supported.

• Memory Management: ART/Ada 1.0 will use the Ada "new" statement to allocate memory,

and use the Ada generic procedure, unchecked_deallocation to deallocate memory.

• Exception Handling: ART/Ada 1.0 will not have the ART-IM-style debugger, but will instead

rely on the exception-handling mechanism of the Ads language.

• Math package: ART/Ada 1.0 will not support math functions.

• Justification: ART/Ada 1.0 will not support the justification facility.

• Logical Dependency: ART/Ada 1.0 will not support the logical dependency facility.

• Schema System: ART/Ada 1.0 will not support the schema system.



ART/ADADESIGNPROJECT- PHASEI TASK I REPORT: OVERALL DE$IGN

3. Design Overview

3.1 Ada Generator

3.1.1 Introduction

Instead of developing a new fron_end program in Ada to generate the Ada source code from an ART

program, the Ada Generator module will be developed in C and added to ART-12vl as an option. The Ada

generator will take as input the internal data structures of ART-INI that define the knowledge base, and

generate as output one or more Ada packages that will be used to initialize ART internal data structures

for the ART/Ada runtime system.

The output of the Ada generator will be compiled and linked with the ART/Ada runtime system which

will be implemented in Ada.

The addition of the Ada generator will make ART-IM ideal as an ART/Ada application development

environment. Alter the development is done, the same environment can be used to generate Ada code for

deployment.

3.1.2 Ada Generator Modules

The Ada generatoriscomposed of the followingmodules:

• Code Vector Dumper: This module dumps code vectors for function callsin LHS or RHS

which willbe interpretedby the functioncallinterpreterof the runtime system.

• Pattern Network Dumper: This module dumps the pattern network which will be interpreted

by the pattern network interpreter of the runtime system.

Join Network Dumper: This module dumps the join network and itsassociateddata structures

such as instantiations,partialmatches, and agenda which will be interpretedby the join

network interpreterof the runtime system.

• MisCellaneousDumper; This module dumps ruleinformationand deffactsinformation,symbol

table,and other miscellaneousinformation.

3.2 ART/Ada Runtime System

10



ART/ADA DESIGN PROTECT -PHASE I TASK IREPORT: O%_ERALL DESIGN

3.2.1 Introduction

The ART/Ada runtime system is modeled after ART-L-M runtime system. When it is compiled and

linked with the ART/Ada runtime system, the Ada code generated by the Ada Generator will restore the

._RT internal data structures for the ART/Ada runtime system.

3.2.2 Runtlme System Modules

The ART,/Ada runtime system is composed of the following modules:

• ART Object Manager: This module contains symbol table and related functions such as

symbolp, stringp, numberp, integerp, floatp, factp, sequencep, streamp, type-of, eq, equal,

gentemp, string-append, string-to-symbol, symbol-to-string, lengthS, positionS, memberS,

nth$.

• Database Manager: This module contains ART database management subprograms (e.g.

assert, retract, etc.)

• Function Call Interpreter: This module interprets function calls in LHS or RHS using code
vectors. It also handles user-defined call-out.

• Pattern Network Interpreter: This module interprets the pattern network.

• Join Network Interpreter: This module interprets the join network.

• Agenda Manager: This module contains Agenda management subprograms.

• Inference Engine: This module contains subprograms that controls the inference engine (e.g.

run).

• User Interface: This module provides a minimal subset of the ART-IM command loop.

ART/Ada will support watch/unwatch, reset, run, agenda, facts.

• IO package: This module contains ART I/0 functions. ART/Ada will support print, princ,

and printout. ART/Ada will not support streams.

• Error Handler: This module definesthe top levelerrorhandler.

• Ca!l-in/Cdl-out package: This module defines subprograms that handle call-in and call-out.

11



ART/ADADESIGN PROJECT - PHASE [ TASK I REPORT: OVERALL DESIGN

References

1. Booch, G. Software Components _lqth Ada. Benjamin/Cummings Publishing, 1987.

2. Inference Corporation. ,4.RTVersion 8.1 Reference 3,'[anual. Inference Corporation, i987.

3. Inference Corporation. A.RT-IM 1.0 Reference :_,[anuat. Inference Corporation, 1988.

12


